skip to main content


Search for: All records

Creators/Authors contains: "Rodríguez-López, Joaquín"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Materials that undergo ion-insertion coupled electron transfer are important for energy storage, energy conversion, and optoelectronics applications. Cyclic voltammetry is a powerful technique to understand electrochemical kinetics. However, the interpretation of the kinetic behavior of ion insertion electrodes with analytical solutions developed for ion blocking electrodes has led to confusion about their rate-limiting behavior. The purpose of this manuscript is to demonstrate that the cyclic voltammetry response of thin film electrode materials undergoing solid-solution ion insertion without significant Ohmic polarization can be explained by well-established models for finite diffusion. To do this, we utilize an experimental and simulation approach to understand the kinetics of Li+insertion-coupled electron transfer into a thin film material (Nb2O5). We demonstrate general trends for the peak current vs scan rate behavior, with the latter parameter elevated to an exponent between limiting values of 1 and 0.5, depending on the solid-state diffusion characteristics of the film (diffusion coefficient, film thickness) and the experiment timescale (scan rate). We also show that values < 0.5 are possible depending on the cathodic potential limit. Our results will be useful to fundamentally understand and guide the selection and design of intercalation materials for multiple applications.

     
    more » « less
  2. Abstract

    Electrochemical research often requires stringent combinations of experimental parameters that are demanding to manually locate. Recent advances in automated instrumentation and machine-learning algorithms unlock the possibility for accelerated studies of electrochemical fundamentals via high-throughput, online decision-making. Here we report an autonomous electrochemical platform that implements an adaptive, closed-loop workflow for mechanistic investigation of molecular electrochemistry. As a proof-of-concept, this platform autonomously identifies and investigates anECmechanism, an interfacial electron transfer (Estep) followed by a solution reaction (Cstep), for cobalt tetraphenylporphyrin exposed to a library of organohalide electrophiles. The generally applicable workflow accurately discerns theECmechanism’s presence amid negative controls and outliers, adaptively designs desired experimental conditions, and quantitatively extracts kinetic information of theCstep spanning over 7 orders of magnitude, from which mechanistic insights into oxidative addition pathways are gained. This work opens opportunities for autonomous mechanistic discoveries in self-driving electrochemistry laboratories without manual intervention.

     
    more » « less
  3. Developing a deeper understanding of dynamic chemical, electronic, and morphological changes at interfaces is key to solving practical issues in electrochemical energy storage systems (EESSs). To unravel this complexity, an assortment of tools with distinct capabilities and spatiotemporal resolutions have been used to creatively visualize interfacial processes as they occur. This review highlights how electrochemical scanning probe techniques (ESPTs) such as electrochemical atomic force microscopy, scanning electrochemical microscopy, scanning ion conductance microscopy, and scanning electrochemical cell microscopy are uniquely positioned to address these challenges in EESSs. We describe the operating principles of ESPTs, focusing on the inspection of interfacial structure and chemical processes involved in Li-ion batteries and beyond. We discuss current examples, performance limitations, and complementary ESPTs. Finally, we discuss prospects for imaging improvements and deep learning for automation. We foresee that ESPTs will play an enabling role in advancing EESSs as we transition to renewable energies.

     
    more » « less
    Free, publicly-accessible full text available June 14, 2024
  4. Graphitic carbon electrodes are central to many electrochemical energy storage and conversion technologies. Probing the behavior of molecular species at the electrochemical interfaces they form is paramount to understanding redox reaction mechanisms. Combining surface-enhanced Raman scattering (SERS) with electrochemical methods offers a powerful way to explore such mechanisms, but carbon itself is not a SERS activating substrate. Here, we report on a hybrid substrate consisting of single- or few-layer graphene sheets deposited over immobilized silver nanoparticles, which allows for simultaneous SERS and electrochemical investigation. To demonstrate the viability of our substrate, we adsorbed anthraquinone-2,6-disulfonate to graphene and studied its redox response simultaneously using SERS and cyclic voltammetry in acidic solutions. We identified spectral changes consistent with the reversible redox of the quinone/hydroquinone pair. The SERS intensities on bare silver and hybrid substrates were of the same order of magnitude, while no discernible signals were observed over bare graphene, confirming the SERS effect on adsorbed molecules. This work provides new prospects for exploring and understanding electrochemical processes in situ at graphitic carbon electrodes. 
    more » « less
  5. Na-ion batteries (NIBs) are proposed as a promising candidate for beyond Li-ion chemistries, however, a key challenge associated with NIBs is the inability to achieve intercalation in graphite anodes. This phenomenon has been investigated and is believed to arise due to the thermodynamic instability of Na-intercalated graphite. We have recently demonstrated theoretical calculations showing it is possible to achieve thermodynamically stable Na-intercalated graphene structures with a fluorine surface modifier. Here, we present experimental evidence that Na + intercalation is indeed possible in fluorinated few-layer graphene (F-FLG) structures using cyclic voltammetry (CV), ion-sensitive scanning electrochemical microscopy (SECM) and in situ Raman spectroscopy. SECM and Raman spectroscopy confirmed Na + intercalation in F-FLG, while CV measurements allowed us to quantify Na-intercalated F-FLG stoichiometries around NaC 14–18 . These stoichiometries are higher than the previously reported values of NaC 186 in graphite. Our experiments revealed that reversible Na + ion intercalation also requires a pre-formed Li-based SEI in addition to the surface fluorination, thereby highlighting the critical role of SEI in controlling ion-transfer kinetics in alkali-ion batteries. In summary, our findings highlight the use of surface modification and careful study of electrode-electrolyte interfaces and interphases as an enabling strategy for NIBs. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
    Alkali ion intercalation is fundamental to battery technologies for a wide spectrum of potential applications that permeate our modern lifestyle, including portable electronics, electric vehicles, and the electric grid. In spite of its importance, the Nernstian nature of the charge transfer process describing lithiation of carbon has not been described previously. Here we use the ultrathin few-layer graphene (FLG) with micron-sized grains as a powerful platform for exploring intercalation and co-intercalation mechanisms of alkali ions with high versatility. Using voltammetric and chronoamperometric methods and bolstered by density functional theory (DFT) calculations, we show the kinetically facile co-intercalation of Li + and K + within an ultrathin FLG electrode. While changes in the solution concentration of Li + lead to a displacement of the staging voltammetric signature with characteristic slopes ca. 54–58 mV per decade, modification of the K + /Li + ratio in the electrolyte leads to distinct shifts in the voltammetric peaks for (de)intercalation, with a changing slope as low as ca. 30 mV per decade. Bulk ion diffusion coefficients in the carbon host, as measured using the potentiometric intermittent titration technique (PITT) were similarly sensitive to solution composition. DFT results showed that co-intercalation of Li + and K + within the same layer in FLG can form thermodynamically favorable systems. Calculated binding energies for co-intercalation systems increased with respect to the area of Li + -only domains and decreased with respect to the concentration of –K–Li– phases. While previous studies of co-intercalation on a graphitic anode typically focus on co-intercalation of solvents and one particular alkali ion, this is to the best of our knowledge the first study elucidating the intercalation behavior of two monovalent alkali ions. This study establishes ultrathin graphitic electrodes as an enabling electroanalytical platform to uncover thermodynamic and kinetic processes of ion intercalation with high versatility. 
    more » « less
  8. Interphases formed at battery electrodes are key to enabling energy dense charge storage by acting as protection layers and gatekeeping ion flux into and out of the electrodes. However, our current understanding of these structures and how to control their properties is still limited due to their heterogenous structure, dynamic nature, and lack of analytical techniques to probe their electronic and ionic properties in situ . In this study, we used a multi-functional scanning electrochemical microscopy (SECM) technique based on an amperometric ion-selective mercury disc-well (HgDW) probe for spatially-resolving changes in interfacial Li + during solid electrolyte interphase (SEI) formation and for tracking its relationship to the electronic passivation of the interphase. We focused on multi-layer graphene (MLG) as a model graphitic system and developed a method for ion-flux mapping based on pulsing the substrate at multiple potentials with distinct behavior ( e.g. insertion–deinsertion). By using a pulsed protocol, we captured the localized uptake of Li + at the forming SEI and during intercalation, creating activity maps along the edge of the MLG electrode. On the other hand, a redox probe showed passivation by the interphase at the same locations, thus enabling correlations between ion and electron transfer. Our analytical method provided direct insight into the interphase formation process and could be used for evaluating dynamic interfacial phenomena and improving future energy storage technologies. 
    more » « less